Stochastic shortest path problems with associative accumulative criteria

نویسنده

  • Yoshio Ohtsubo
چکیده

We consider a stochastic shortest path problem with associative criteria in which for each node of a graph we choose a probability distribution over the set of successor nodes so as to reach a given target node optimally. We formulate such a problem as an associative Markov decision processes. We show that an optimal value function is a unique solution to an optimality equation and find an optimal stationary policy. Also we give a value iteration method and a policy improvement method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از الگوریتم ژنتیک در مسائل کوتاهترین مسیر چند معیاره بر پایه سیستمهای اطلاعات مکانی

Multi-criteria shortest path problems (MSPP) are called as NP-Hard. For MSPPs, a unique solution for optimizing all the criteria simultaneously will rarely exist in reality. Algorithmic and approximation schemes are available to solve these problems; however, the complexity of these approaches often prohibits their implementation on real-world applications. This paper describes the development ...

متن کامل

Solving Stochastic Shortest-Path Problems with RTDP

We present a modification of the Real-Time Dynamic Programming (rtdp) algorithm that makes it a genuine off-line algorithm for solving Stochastic Shortest-Path problems. Also, a new domainindependent and admissible heuristic is presented for Stochastic Shortest-Path problems. The new algorithm and heuristic are compared with Value Iteration over benchmark problems with large state spaces. The r...

متن کامل

Dynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)

This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...

متن کامل

General Error Bounds in Heuristic Search Algorithms for Stochastic Shortest Path Problems

We consider recently-derived error bounds that can be used to bound the quality of solutions found by heuristic search algorithms for stochastic shortest path problems. In their original form, the bounds can only be used for problems with positive action costs. We show how to generalize the bounds so that they can be used in solving any stochastic shortest path problem, regardless of cost struc...

متن کامل

Acceleration Operators in the Value Iteration Algorithms for Average Reward Markov Decision Processes

One of the most widely used methods for solving average cost MDP problems is the value iteration method. This method, however, is often computationally impractical and restricted in size of solvable MDP problems. We propose acceleration operators that improve the performance of the value iteration for average reward MDP models. These operators are based on two important properties of Markovian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2008